Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Tai-Hsiang Huang, ${ }^{a}$ Wha-Tzong Whang, ${ }^{\text {a }}$ Yuh-Sheng Wen ${ }^{\text {b }}$ and Jiann T. Lin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd, Hsin Chu, Taiwan, and ${ }^{\text {b }}$ Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan

Correspondence e-mail:
redman@chem.sinica.edu.tw

## Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.037$
$w R$ factor $=0.066$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 2,8-Bis(3-phenylquinoxalin-2-yl)-5 $\lambda^{6}$ -dibenzo[b,d]thiophene-5,5-dione

The bond lengths and angles in the title compound, $\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, are normal. The dihedral angles between the dibenzothiophene- $S, S$-dioxide and two quinoxaline groups are 34.88 (1) and $45.86(1)^{\circ}$.

## Comment

The application of organic electroluminescent (OEL) in flatpanel displays using small organic molecules or organic polymers has been intensively pursued after the reports of Kodak's team (Tang \& Van Slyke>, 1987) and Cambridge's group (Burroughes et al., 1990). Recently, the quinoxaline system has been introduced into small molecules (Thomas et al., 2005) and successfully applied in organic light emitting devices (OLEDs) for electron-transport materials (Bettenhausen et al., 1997).

In our search for new compounds that could be used as $n$ type OLEDs (Huang et al., 2005), the title compound, (I) (Fig. 1), has been synthesized by the condensation of a bisdione with a diamine (see scheme). All bond lengths and angles in (I) are normal (Table 1). The mean planes of the dibenzothiophene- $S, S$-dioxide ( $P 1$ ), two quinoxaline ( $P 4$ and $P 5$ ) and two phenyl ( $P 6$ and $P 7$ ) groups (see Fig. 1) make dihedral angles $P 1 / P 4, P 1 / P 5, P 1 / P 6, P 1 / P 7, P 4 / P 6$ and $P 5 / P 7$ of 34.88 (1), 45.86 (1), 52.50 (1), 56.68 (1), 42.50 (1) and $50.50(1)^{\circ}$, respectively. The crystal packing is stabilized by van der Waals forces.

(I)

Received 2 November 2005 Accepted 10 November 2005 Online 16 November 2005

## Experimental

A two-necked round-bottomed flask was charged with 1,2-phenylenediamine ( $216 \mathrm{mg}, \quad 2.2 \mathrm{mmol}$ ), 1-[5,5-dioxo-8-(2-oxo-2-phenyl-acetyl)-5H-5 $\lambda^{6}$-dibenzothiophen-2-yl]-2-phenylethane-1,2-dione ( $528 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) and $\mathrm{CHCl}_{3} /$ ethanol ( 80 ml ; ratio 1:2). Two drops of sulfuric acid were then added to initiate the reaction. The mixture was refluxed for 24 h . After cooling, the solvent was removed by Dean-Stark distillation. The resulting suspension was separated by filtration, washed with methanol and dried. The solid was sublimed to provided a powdery product. Crystals suitable for single-crystal X-ray diffraction were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with $n$-hexane at room temperature. The compound was obtained as a colourless solid in $62 \%$ yield. FAB MS: $m / e 624(\mathrm{M}+\mathrm{H})^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.39-7.42 ( $\mathrm{m}, 6 \mathrm{H}$, ortho-, para- $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 7.50-7.54 ( $\mathrm{m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}$, meta-
$\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.69\left(d, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 7.83-7.86\left(m, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.13(s$, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right)$, 8.19-8.25 ( $m, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ ). Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ : C 76.90, H 3.87, N 8.97\%; found: C 77.02, H 4.01, N 8.86\%.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{40} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=624.69 \\
& \text { Triclinic, } P \overline{1} \\
& a=10.7261(3) \AA \\
& b=12.0606(4) \AA \\
& c=13.4213(4) \AA \\
& \alpha=107.719(2)^{\circ} \\
& \beta=103.65(2)^{\circ} \\
& \gamma=108.751(2)^{\circ} \\
& V=1454.81(8) \AA^{3}
\end{aligned}
$$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.873, T_{\text {max }}=0.980$
10660 measured reflections

$$
Z=2
$$

$D_{x}=1.426 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2322
reflections
$\theta=2.8-27.8^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Prism, colourless
$0.16 \times 0.15 \times 0.14 \mathrm{~mm}$

5107 independent reflections
3245 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 13$
$l=-15 \rightarrow 14$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.066$
$S=0.82$
5107 reflections
425 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0197 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.31 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97 Extinction coefficient: 0.0012 (4)


Figure 1
The molecular structure of (I), showing the atom-numbering scheme and $30 \%$ probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work is supported by the Department of Materials Science and Engineering, National Chiao Tung University, and the Institute of Chemistry, Academia Sinica.

## References

Bettenhausen, J., Greczmiel, M., Jandke, M. \& Strohriegl, P. (1997). Synth. Met. 91, 223-228.
Bruker (2001). SMART, SAINT (Apex2 Version 1.0-27) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. \& Holmes, A. B. (1990). Nature (London), 347, 539-540.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Huang, T.-H., Whang, W.-T., Shen, J. Y., Wen, Y.-S., Lin, J. T. \& Wu, C.-C. (2005). J. Mater. Chem. Submitted.

Thomas, K. R. J., Velusamy, M., Lin, J. T., Tao, Y.-T. \& Chuen, C.-H. (2005). Chem. Mater. 17, 1860-1866.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, C. W. \& Van Slyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.


[^0]:    (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

